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REVIEW ARTICLE 
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AbstmcL The three-component ionic microemulsion system consisting o f  ~o~/water/decane 
shows an U~USUBI phase behaviour in the vicinity of room temperature The phase diagram 
in the temperaturevolume-fra~tio" (of the dispened phase) plane exhibits a lower coiisolute 
critical point at about 40 'C and 10% t'olume fraction. A percolorion line, stmtmg from 
the vicinity of the critical point. cuts across the plane. extending to the high-volume-fraction 
side at progrecsively lower temperatures. Th is  phase behaviour can be understood in t e r m  
o f  a system o f  polydispersed spherical water droplets, each coated by a monolayer of AOT, 

dispersed in a continuum of oil. These droplets interact with each other via n hard-core plus 
a shon-range attractive interaction. the strength of which increases with temperature. We 
rhow thal Baxter's sticky-sphere model CM account for the phase behaviour, including the 
percolation line, quantitatively provided th3t the stickiness pmmeter is a suitable function of 
temperature. We use the structure factors measured by small-angle neutron scattering (SANS) 

below the critical temperature to determine this functional dependence. We 3150 invstigate the 
dynamics of droplets. below and approaching the critical and pcrcolalion points, by dynamic light 
scattering. The first cumulant and time evoluuon of the droplet density correlation function can 
be quantitatively calculared by assuming the existence o f  polydispersed fractal clusters formed 
by the microemulsion droplets due to attraction. The relaxation phenomena obselved in an 
extensive set of measurements o f  electrical conductivity and permittivity close to percolalion 
can also be inrerpreted through the same cluster-forming mechanism, which reproduces the most 
relevant features o f  the frequency-dependent complex dielectric constant o f  this system. 

1. Introduction 

Three-component microemulsion systems mode of ionic or non-ionic surfactants, water 
and oil exhibit interesting phase behaviour in the vicinity of room temperature. At a 
characteristic temperature where the surfactant has balanced affinities toward water and 
oil, called the hydrophile-lipophile balance (HLB) temperature, a typical symmetric ternary 
microemulsion system, having equal volume fractions of water and oil, shows the well 
known 2-3-1 phase progression, as the surfactant concentration is increased from zero to 
more than 8% [I] .  When surfactant concentration is very low, the molecules are dispersed in 
water and oil as monomers. The system is naturally separated into two phases, with an oil- 
rich phase on the top (lighter) and water-rich phase on the bottom (heavier) because of high 
interfacial tension between water and oil. There is no discernible organized microstructure 
in the two phases. At relatively higher surfactant concentrations, a three-phase coexistence, 
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with a middle-phase microemulsion in coexistence with an oil-rich phase on the top and 
a water-rich phase on the bottom, i s  to be expected simply because of a finite and equal 
solubilization power of the surfactant for water and oil. The middle-phase microemulsion 
is an interesting liquid because there is an organized microstructure in it [2]. The 
microemulsion shows ultralow interfacial tensions between itself and the water and oil-rich 
phases. The micro-structure of the middle-phase microemulsion i s  often described as being 
bicontinuous i n  both water and oil [3]. With further increase in  the surfactant concentration, 
a minimum concentration will be reached whereby al l  the excess water and oil are solubilized 
into a single-phase microemulsion. This minimum concentration i s  usually between 5 
and 8% for a good microemulsion system. The value of the minimum concentration i s  
a measure of the amphiphilicity of the surfactant molecules at that temperature, being 
lower for higher amphiphilicity. In  the vicinity of this minimum surfactant concentration, 
the microstructure of the one-phase microemulsion is disordered bicontinuous [4]. As the 
surfactant concentration further increases, the one-phase microemulsion transforms into a 
lamellar structure, which may be called an ordered bicontinuous structure, and then to 
some other three-dimensional ordered structures. This disorder-to-order transition occurs 
usually around 15% of the surfactant concentration [4]. Away from the HLB temperature, 
the phase progression as a function of surfactant concentration i s  different because at these 
temperatures the surfactant film, located in between water and oil. aquires a spontaneous 
curvature. Depending on the sign of the curvature, a two-phase coexistence, with either 
a water-in-oil W O )  microemulsion on the top and a water-rich phase on the bottom or 
with an oil-in-water ( O N )  microemulsion on the bottom and an oil-rich phase on the top, 
becomes possible for moderate concentrations of the surfactant. Micro-structures of w/o 
or ON microemulsions are likely to be a droplet type. The AOT/water/decane system does 
not follow, however, this usual pattern of phase behaviour. Around room temperature, or 
more specifically from 10 to 50 "C the surfactant film, consisting of AOT molecules having 
a bulky tail and a small head, possesses a spontaneous curvature toward water due to the 
hydrophilicity-lipophilicity imbalance of the AOT molecules. Thus, at room temperature, one 
finds in the ternary phase triangle a large one-phase region, called L2 phase, extending from 
the decane corner into the middle of the phase triangle. In  the L2 phase, even with equal 
volume fractions of water and oil, the microemulsion, instead of being bicontinuous like 
other three-component microemulsion systems made of non-ionic (C, E,-type) surfactants, 
consists of water droplets, coated by a monolayer of AOT, dispersed in decane [SI. With 
this microstructure, the microemulsion i s  basically an insulator, having a conductivity of 
the order of a-' m-', because the water droplets are separated from each other. Our 
previous SANS experiments verified that the average radius ( R )  of the water droplets is 
determined essentially by the molar ratio of water to AOT. called W ,  in the system. An 
approximate empirical relationship between the radius (in 8) and W is ( R )  = $W.  Thus, 
for W = 40, the average water-droplet radius i s  about 60 A [6]. This  water-in-oil droplet 
structure i s  maintained even if the volume fractions of  water and oil are equal 151, provided 
the temperature is below 25 "C. This case i s  in  sharp contrast to the common situation that, 
for equal water and oil volume fractions, the microstructure of one-phase microemulsions 
were generally found to be bicontinuous [7, 81. Even for the AOT/water/decane system, when 
a small amount of salt (NaCI) is added, the common 2-3-1 phase progression is obtained at 
around the hydrophile-lipophile balance temperature of 40 "C [4] and a SANS experiment in  
the one-phase channel around this temperature conclusively showed that the microstructure i s  
bicontinuous [4,9]. This persistent droplet structure in the ternary AOTIwateddecane system 
can, however, be used to realize an interesting coexistence of a critical phenomenon at low 
volume fraction and high temperature and a percolation phenomenon at lower temperatures 
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but at all volume fractions. In fact, this is a rare situation in which one can study, in a real 
system, the analogy, both in the static and dynamic properties, between approaching the 
critical point and percolation point in temperature from below at the same volume fraction. 
We shall stress this analogy throughout this paper. Figure 1 shows the (T+)  phase diagram 
of the AOT/&O/decane system when the Water-to-AOT molar ratio is W = 40.8. Substitution 
of H 2 0  by D20 merely shifts all the phase boundaries up by about 2 "C. 6 denotes the 
volume fraction of the dispersed phase, in this case the AOT plus water. In the (T+) 
diagram, one sees a one-phase (L2) region below 40 "C. In the interval of 4 between 
zero and 0.4, there is a cloud-point curve separating the one-phase droplet microemulsions 
from two-phase droplet microemulsions. The previous SANS experiment established that the 
average droplet sizes and their size distributions are, within the experimental error, identical 
in the one-phase and two-phase regions [6]. The critical volume fraction is approximately 
0.1 and the critical temperature is 40 "C [IO] in HzO-based microemulsions. Above the 
volume fraction of 0.4 there is a phase boundary between the L2 and a lamellar phase where 
the microstlucture is ordered and bicontinuous in  water and decane. The novelty of this 
phase diagram is, however, the existence of a percolation line, extending from the left of the 
critical point. all the way to higher volume fractions, gradually decreasing in temperature 
to about 23 "C at 4 = 0.7. Below the percolation line the, microemulsion is non-conducting 
but above the percolation line it becomes conducting. In crossing the line, the conductivity 
increases by over five orders of magnitude. Figure 2 shows a set of DC conductivities U 

(plotted in a logarithmic scale) as functions of T and @ [ 1 I]. One sees clearly a set of 
steeply rising sigmoidal curves that can be used to define a set of loci (Tp, &,) in terms of 
their inflection points. The asymptotic behaviour of the DC conductivity near the threshold, 
at a given @, can be expressed as 

coming up from below, and 

going down in temperature from above. The exponents s' and f have been determined 
experimentally to be 1.2 rt 0.1 and 1.9 * 0.1 respectively [ I l l .  These exponents are the 
same when T is fixed but @ is varied [I I]. The exponents', determined from conductivities 
below the threshold, agrees with the value of the index proposed in the so called dynamic 
percolation theory [IZ, 131, which is distinct from the standard static percolation exponent 
s = 0.73 [141. On the other hand, the exponent f deduced from data above the threshold 
agrees with the static or geometric percolation theory [14]. In the theory of dynamic 
percolation, the conduction of electricity is conjectured to be mediated by charge carriers 
(presumably the sodium counterions from the AOT molecules) which migrate rapidly among 
microemulsion droplets forming transient fractal clusters, due to a short-range attractive 
interaction between the droplets. The percolation threshold is defined theoretically to be 
the point where the average cluster size becomes infinity, namely, when at least one cluster 
spans the entire sample. Figure 3 depicts the asymptotic behaviour of the DC conductivity 
by plotting scaled conductivities Tp(a/A) ' /" '  and Tp(u/B)-'/ '  as a function of T - T,, for 
several volume fractions. It is seen that above the threshold, all the data at different volume 
fractions follow the asymptotic relation (2) very well. However, below the threshold, the 
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2. Baxter’s sticky-sphere model and the associated phase diagram 

A reasonable model for a microemulsion in the L2 phase is to regard it as a colleclion of 
spherical colloidal particles of average radius (R) interacting among one another via a short- 
range temperature-dependent attractive pair potential (or more appropriately a potential of 
the mean force). This pair potential can, for example, be a square-well potential with a 
hard-core diameter a - A, plus an attractive well of depth --E and width A. In order to 
show a pictorial representation of the clustering process we have performed a numerical 
simulation of the square-well potential, a = 1.02, A = 0.02 (in units of the inner diameter 
of the attractive well U ) ,  and ,56 = 3.7, where ,5 = I j k s T .  Figure 4(0) shows the growth 
of the largest fractal cluster of connected nearest-neighbour droplets as a function of the 
volume fraction of the dispersed phase from 0.05 to 0.45, the percolation threshold for 
the parameters we used can be located between the second and the third figure of the 
sequence. Similar figures are obtained as a function of temperature. Figure 4(b) shows 
nearest-neighbour clusters, at r = 0.1 and 4 = 0.1. 

The liquid theory with an arbitrary square-well potential cannot be solved in an analytical 
form, except for a limiting case in which 6 tends to infinity and A to zero in such a way 
that a contribution of the attractive tail to the second virial coefficient exists. This limiting 

1 
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Figure 2. DC electrical conductivity divided by the volume fraction of the AoT/H2O/decane 
system as a function of temperature for different volume fractions (from 9.8%. right. to 65%. 
left) and showing the percolation behaviour [ I  I]. Note that the percolation temperature s t m s  at 
about 40 ' C a t  9.8% and progressively decreases to about 22 O C  at a volume fraction of 6S%. 

Figure 3. The scaled conductivities Tp(n/A)'I'' and TQ(a/B)-'/r are plotted a a function of 
T - Tp at different volume fractions. showing the power-law behaviour neu TQ 1111. Note that 
at low volume fractions percolation behaviour approaching from below is not well defined. 

potential is called Baxter's sticky-sphere potential. Specifically, the pair potential is of the 
form 

r < u  

(3) 
a 

12r (a -a) 
r > a. 
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(4 

Figure 4. ( a )  The gmwth of the largest fractal cluster of connected nearest-neighbour droplets 
as a function of the volume fraction of the dispersed phase from 0.05 to 0.45. Snapshots taken 
from a Monte Carlo numerical simulation of the square-well potential with parameterr ' I  = 1.02. 
A = 0.02, and f l s  = 3.1, equivalent to Baxter'r model with r = 0.1. (b)  A snapshot of the 
system, showing differently shaded nearest-neighbour clusters. at r = 0.1 and volume fraction 
of the dispersed phase 0. I .  

It is understood that the limit v + a is to be taken in the calculation. From our discussion 
above, it is obvious that the magnitude of a -A  is about 2(R) .  The dimensionless parameter 
I l r  is called the stickiness parameter. The sphere is stickier the smaller the value of T is. 
In the limit of r tending to infinity, the pair potential reduces to a hard-sphere potential. 
Assuming a << A and using a perturbation theoretical solution for the square-well potential 
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to the lowest order in A l a ,  one gets a relation [I51 

It is seen from (4) that the stickiness increases as Ala or @ E  increase. For AOT molecules 
in decane, the parameter A should correspond roughly to the length of the hydrocarbon tail. 
The tail could take an increasingly stretched conformation as temperature increases, thus 
increasing the interaction strength among droplets. 

Baxter showed [ 161 that the Omstein-Zernike equation using this sticky pair potential 
can be solved analytically in the Percus-Yevick (PY) approximation. The PY approximation 
amounts to the reasonable ansatz that the direct correlation function c ( r )  = 0 outside the 
range of the potential a .  Combining this ansatz with the exact boundary condition for hard 
spheres and knowing that the pair-correlation function g(r )  = 0 inside the hard core, the 
direct correlation function inside the hard core can be found to be a polynomial of r .  Thus 
one can obtain an analytical form of the three-dimensional Fourier transform of the direct 
correlation function c (k )  as a function of the volume fraction of the spheres 11 and the 
stickiness parameter I l r .  Here, 17 = pa3n/6, and p is the number density of the spheres. 
In comparing the theory with experiments for the scattering intensities, we shall identify q 
with 4. 

First, the interparticle structure factor S ( k )  is calculated from the relation 

From the limiting value S ( k  + 0) = pksT,yT we get the isothermal compressibility x7. By 
integrating x~ with respect to the number density, one obtains the compressibility equation 
of state 

where the parameter A ,  a function of rl and 5 ,  is given by the smaller real root of 

From the compressibility equation of state. one finds the existence of a gas-liquid phase 
transition with a critical point occurring at qc = 0.1213 and r, = 0.0976. Although different 
results are obtained using the energy route to the equation of state, computer simulations 
[ 171 do suggest that the compressibility results are probably the most accurate PY estimates 
of the position of the critical point. Again, by integrating the compressibility equation 
of state, Barboy 1181 was able to obtain an analytical chemical potential @ valid both in 
the one- and two-phase regions. Having the chemical potential and pressure, one can then 
obtain the coexistence curve by solving for the coexisting gas and liquid densities at a given 
T ,  which is less than r, in the two-phase region. Since in the AOT-based microemulsion 
system the stickiness between droplets increases as temperature increases, i t  is natural to 
plot the stickiness as a function of the volume fraction. Figure 5 shows such an inverted 
coexistence line obtained by plotting rc/r against q/qc .  In the same figure the corresponding 
spinodal line is also plotted as a dashed line, The spinodal line is the locus of (5 ,  q )  where 
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Figure S. Theoretical percolation. coexistence and spinodal lines according IO Baxter’s model 
This figure gives locarions of one- and two-phae, percolated and non-percolated regions in a 
plane defined by r,/r and according to the model. 

the isothermal compressibility diverges. It should be nored here that the cloud-point curve 
(or the coexistence curve) is the locus of pairs of q where the chemical potential and the 
pressure of the two coexisting phases became identical at a given r and it is different from 
the points where the compressibility diverges, except at the critical point. 

The coexistence curve which can be deduced from the use of Baxter’s potential is 
highly skewed toward the low-volume-fraction side, a feature which is often experimentally 
observed in micellar solutions and microemulsions. This is due to the interaction which 
is short ranged and strong and is in sharp contrast to the wellknown van der Waals case, 
which is derived from an interaction that is long ranged and weak. To assess the degree 
of asymmetry on the gas and liquid sides, we have worked out the respective asymptotic 
behaviours 

5 

5 
(9) 

The skewness can be assessed from the ratio of amplitudes in (8) and (9). namely 
0.1584/0.0264=6. These equations also show that the PY approximation gives the mean- 
field exponent p = f. The mean-field theory is appropriate in a coarse analysis of the 
coexistence curve over a wide range of volume fractions. When making a fine analysis 
close to the critical volume fraction, the king value p = 0.33 has to be used and the mean 
field theory is not accurate. 

One of the nicest feature of Baxter’s model is, however, that one can also derive 
analytically the percolation loci in the ( r ,  q )  plane. Coniglio er a/ [I91 introduced a pair- 
connectedness function P ( r )  in 1977, i n  connection with the development of a continuum 



Water-in-oil microemulsions 10863 

percolation theory. Given a particle at the origin, 4 a r z p P ( r )  d r  is the number of particles 
i n  the spherical shell (r.  r + dr )  which are connected to this central particle and belong 
to the same cluster. Coniglio ef a/ showed that P(r) also satisfied an Ornstein-Zernike- 
type equation with a modified direct correlation function c t ( r ) .  By invoking the short-range 
nature of the direct correlation function, namely, ct(r) = 0, for r > a, and the sticky-sphere 
condition 

ha 
P ( r )  = - 6(r - a )  

12 

Chiew and Glandt [20] were able to show that the average cluster size S is given by 

The onset of percolation can be defined as the point where S diverges. Thus percolation 
loci in the (r, q) plane are given by rl = I/h,  leading to an equation 

Figure 5 shows also a percolation line according to (12). 
In order to compare the theoretical phase diagram with the actual one, we have to specify 

the relationship between the stickiness parameter 11s and the temperature. Equation (4) 
suggest that llr is proportional to the interaction strength and the effective interaction 
strength increases with temperature since there is a lower consolute point. The simplest 
relationship with two parameters a and y is 

1 - a  I - - rc 
- =  r ( (13) 

We can try to fit the experimental coexistence curve using the sticky-sphere model 
supplemented by (13) and then predict the percolation loci with it. 

3. Analysis of SANS data below T, 

Extensive sets of SANS experiments have been performed in AOT/water/decane microemul- 
sion systems as a function of temperature and volume fraction by replacing natural water 
by DzO. As we said before this changes slightly the critical parameters and shift the phase 
diagram toward higher temperature by approximately 2 "C. 

SANS intensity distribution from a system of polydispersed spherical droplets can be 
written as [ZI] 

where Ap = pw - ps is the difference of scattering-length densities of D20 and protonated 
decane, @W the volume fraction of DzO, = ( R ) ,  the average radius of the water core, and 
Z the index related to the polydispersity (the width of the size distribution to the average 
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size of the droplets). The normalized. volume square averaged particle structure factor is 
defined as 

S H Chen et a1 

The form factor of a spherical particle of radius R is F ( Q )  = 3 j l ( Q R ) / ( Q R ) ,  where j , ( x )  
is the first-order spherical Bessel function. The form factor averaged interparticle structure 
factor for a system of p different sizes of droplet is defined as 

The size average is taken with respecl to a SchOltz distribution, which is known to be 
accurate in the case of the AOT/water/decane system [2]. In this case the degree of 
polydispersity is A R / ( R )  = (1  + Z)- ' / ' .  The partial structure factor, S; j (Q) ,  for a 
multicomponent sticky-sphere system has been given by Robertus et al [ZZ], for i. j = 1-9. 
using Baxter's method. The FORTRAN package for calculating the partial structure factors 
has been kindly supplied to us by Dr J G H Joosten. The volume square averaged particle 
structure factor, assuming the Schultz distribution of sizes, had previously been given in 
an analytical form by Kotlarchyk and Chen [23]. Equation (14) contains three adjustable 
parameters ( R ) .  Z and r enters in equation (14) through the Baxter's model expression for 
S(Q). These parameters are functions of temperature and volume fraction. Here we assume 
that particles of different sizes have the same degree of stickiness. 

Figure 6 shows results of fitting (14) to the intensity data from samples at 4 = 0.08, 
0.10 and 0.12, all measured at T = 40 "C, closest to the critical temperature [24]. The 
three graphs on the left show experimental I ( Q ) ,  in log scale, against Q plots and their 
theoretical-analysis results (solid lines). The three graphs on the right depict the normalized, 
volume squared averaged particle structure factor and the form factor averaged interparticle 
structure factor extracted from the fits. The fits are satisfactory and from them we were 
able to extract, for all three samples, an averaged value of the water core ( R )  = (50 & 1) 
A, close to what we estimated in section 1, and Z = 8, corresponding to a polydispersity 
index of 335.. The dimensionless stickiness parameter r = 0.112 for the 8% sample is 
the closest to the critical value r, = 0.0976. From this we deduce that the critical volume 
fraction for the DzO-based microemulsion system we studied is near 8%. This value is 
slightly different from that reported for the HzO-based microemulsion system, namely 10%. 
As can be seen, the form factor averaged interparticle structure factor shows a zero-angle 
peak due to critical scattering and is devoid of the first diffraction peak due to low volume 
fractions. The slight wiggle around Q = 0.2 A-' is an artifact due to a finite sampling 
( p  = 9) of the Schultz size-distribution function. It does not affect the quality of the fit 
because the average particle structure factor already decays to below IO-' in this Q range. 

Figure 7 shows m u l t s  of the analyses of the temperature dependence of the scattering- 
intensity distributions for the 8% sample [24]. As temperature increases from 30 to 35 and 
to 40 "C the stickiness parameter progressively decreases toward the critical value, while 
the average size decreases and the width of the size distribution increases slightly. 

4. Analysis of the phase diagram 

What is most pleasing to see is, however, that the tempetature variation of rc/r derived 
from SANS data comes out in the form given in (13). This situation is similar to the case of 
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Figure 6. SANS intensity distributions and their analysis by Buter's model with a polydispersity. 
On the left of the figure. we show SANS intensity distributions for 8. 10 and 12% volume fraction 
samples at 40 T. The analysis shows that 8% caw is closest to the cnttcal volume fraction as 
indicated by the lowest value of r obtained. In the right-hand p m  of the figure we present the 
corresponding particle Structure factor P ( Q )  and the inlerparlicle SfNCfUre  factor S(Q). It C;UI 
be seen from the figure that P(Q) for the three cases are almost identical indicating the same 
size and size distribution of the microemulsion droplets. 

the non-ionic micellar solution investigated by Menon er a1 1251. These authors suggested 
a linear relation between rc/r and T/T,. Figure 8 plots the rc/r values obtained from 
analyses of SANS data against (1 - T/Tc)0,94. Linear relations are obtained by adjusting the 
value of T,. For the sample at a volume fraction of S%, the fitted value of T, turns out to 
be 42.7 "C, close to the actual T in a DzO-based microemulsion system. The slope of the 
straight line gives 01 = 11.03 in (13). 

We shall derive (13) heuristically in the following way. We study the low-Q behaviour 
of the form factor averaged structure factor S(Q) for a system of sticky hard spheres of an 
average diameter 100 A and a polydispersity index Z =: IO at the critical volume fraction 
qc = 0.1213. Figure 9 shows that at sufficiently small Q, the Omstein-Zernike functional 
form is obtained and we can thus extract the long-range correlation length 6 as a function 
o f t  as we approach the critical point. Figure 10 shows log-log plots of the correlation 
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Figure 7. SANS intensily distributions of the 8% wmple as function of tempemure. It is notable 
ba t  S(Q) increasingly peaks in the forward direction iv1 the tempenlure approaches the critical 
point. Bul the particle sizes and sue distributions stay h e  same. 

length < against (1 - 7J7).  We obtain a series of straight lines implying the validity of a 
relation 

where the exponent U' depends on the polydispersity index Z. When Z is very large, namely, 
when the system is monodisperse sticky spheres, U' = 0.5; but when 2 = IO. corresponding 
to the system under study, U' = 0.532. On the other hand, it is known experimentally as 
well as theoretically that near the critical point of a fluid, the correlation length is a function 
of the temperature distance from the critical point according to 

with U = 0.5, as in a mean-field theory like the PY approximation. Equations (17) and (18) 
taken together lead to our previous ansatz (13) in which y = u/u'  = 0.500/0.532 = 0.94. 
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Figure 8. The inverse of the stickiness panmeter T extracted from SANS data For 8% volume 
fnction is plotted as a function of (1 - T/ T,)",y' in order to obtain the slope (I = -I I .03 and Tc. 
This value of oi is used to calculate the theoretical coexistence curve. It is remarkable that the 
T, obtained from the 8% data agrees with the experimental T, measured for AOT microemulsions 
made with DzO. 

Figure I 1  shows a comparison of the experimental cloud-point curve (stars) and the 
theoretical coexistence curve (solid line) and spinodal line (short-dashed line) calculated 
by taking monodisperse sticky spheres (using the average size of the polydisperse real 
system as the size of the monodisperse theoretical model) with the stickiness parameter l / r  
depending on temperature according to the relation 

( E>,,, r, - = 1 - 1 1  I - -  , 
1 

In order to account completely for the percolation loci using (12) and (13). we have 
to introduce a temperature-dependent effective sticky-sphere diameter. This idea is a 
reasonable one because the definition of connectivity of two spheres should be dependent 
on the way it  is measured experimentally, and so depends on the thermodynamic state of 
the liquid. In fact i t  is intuitively appealing to postulate that the higher the temperature 
the easier it is for the counterions to migrate from one water core of a droplet to another 
in the neighbourhood. Therefore the effective diameter of the microemulsion droplets, as 
far as the electrical percolation is concerned, is larger for higher temperatures. Figure I 1  
shows the result of force fitting the experimental percolation loci (diamonds) with (12) 
(long-dashed line) for volume fractions up to 0.4. Indeed, for larger values of the volume 
fraction the theoretical percolation line (12) differs significantly from the percolation line 
of the Baxter's model, as shown via computer simulations in [17]. The ratio (qsHs/q)1/9. 
which is a measure of the ratio of the effective diameter to the actual diameter, turns out 
to be a linear function of TIT,. It is shown in figure 12 as a solid line. 

5. Dynamics of the droplet-number density fluctnations near the critical point 

We shall turn next to the discussion of some aspects of the droplet dynamics near the critical 
point. The study of the structure and dynamics of complex systems in term of clusters has 
been undertaken in many fields from nucleation theory 1261, where cluster formation and 



10868 S H Chen er a1 

0.10 

@ 
? 

0.05 

0.00 ' 
0.0000 0.0008 0.0016 

Q' (nm") 

Figure 9. Small-Q behaviour of th: S(Q) function near the critical point for a volume fraction 
0.1213 ~ l h  Z = 10 and II = 100 A. The graph shows that S(Q) follows Ihe Omsteio-Zemike 
function ntsufficicienlty small Q so that the correlation length C can be extrackd. If cm be seen 
fhar as r approaches r, (= 0.0976) the ~orrela1.tlon length increases. 
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Figure 10. The dependence of the extracted correlalion length on (1 - rc/r), It is seen that 
near the critical paint, this is a power-law dependence with an index U. For a monodisperse 
system (carresponding IO large Z), U' is 0.5. As the polydispersity increases (corresponding Io 
decreasing values of Z).  the value of U' increases. At 33% polydispersity. Y' is 0.532. 

growth lead to the formation of a stable phase from an unstable supercritical solution, to 
critical phenomena in which the cluster structure and dynamics is supposed to control the 
behaviour of the system close to criticality [27, 281, as well as in transport phenomena 
in disordered materials [14, 291. We are here interested in the possibility of interpreting 
scattering data in terms of independent clusters, close to the critical point. In more precise 
words, we require a procedure to partition the N monomers in a system in Nc clusters 
containing N, particles each, in such a way that 
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percolating increa..s as the temperature increases. 

becomes equal to 



I0870 

where R,, and U,,, are respectively the position of the centre of mass and the relative 
displacement of monomer i in the nth cluster. The equality between the two expressions 
underlines the requirement that clusters behave as independent units, i.e. with no correlation 
among them. Describing the system as a collection of Nc independent clusters allows us to 
write static and dynamic scattering properties in a straightforward way. 

It has been recognized for a long time that the simple definition of clusters in terms of 
groups of closely interacting monomers does not produce independent clusters [30]. Only 
recently have Coniglio and Klein [31] been able to show in a formal way, for the king 
model, that independent clusters can be generated by breaking clusters of nearby parallel 
spins into smaller ones. According to Coniglio and Klein, nearby parallel spins are said 
to belong to the same cluster only with a probability I -e-'#', where J is the interaction 
energy. Clusters so defined have the remarkable property of percolating at the critical point 
and being characterized by the same thermal critical exponents. In other words, the equality 
between (20) and (21) above holds not only at the critical point but all along the critical 
isochore, and not only at Q = 0 but for all WavevectorS. We show this effect in figure 
13. where the structure factor, evaluated from a two-dimensional 128 x 128 Monte Carlo 
simulation of an king model at three selected temperatures, is reported for both (20) and 
(21) using Coniglio and Klein's procedure. The intensity scattered by the collection of 
clusters is coincident with the intensity scattered by the whole system. considered as made 
up of individual interacting spins. The Lorentzjan line shape of scattered light can thus 
be written as a sum of the scattering of polydisperse fractal clusters, characterized by a 
polydispersity index r and a fractal dimension D. The exponents r and D are related 
to the thermal critical exponents for the coexistence curve @ and correlation length v by 
D = d - @/U and D(T - I )  = d. The independent-cluster picture can be generalized to 
the off-critical case if  the asymmetry i n  the concentration of up and down spins is properly 
taken into account [32]. 

The starting point of our theory is an assumption that the slow dynamics of the droplet 
density fluctuation is dominated by diffusive motions of the independent percolation clusters 
1331. This assumption is expected to be good in the vicinity of the percolation threbhold, 
where large fractal clusters are formed. Formation of the fractal clusters is a necessary 
condition for the dynamic percolation theory [l2,  131 to be valid. We have used it to 
explain the conductivity exponent below the percolation threshold in section 1. In the 
AOTlwaterldecane system, as one can see from the phase diagram (figure I ) ,  the critical 
point is only about 2 "C above the percolation point. One therefore expects that the 
cluster structure and cluster size distribution in the critical region are similar to those at the 
percolation point. 

For light scattering. the wavelength of visible light is much larger than the droplet sizes. 
Hence, for this Q range, the particle structure factor is nearly unity and we can ignore 
it. In order to deduce the dynamic structure factor S(Q,  t )  of a collection of independent 
clusters, we first calculate the interparticle structure factor &(Q) for a cluster containing k 
particles and having a radius of gyration Rn. We do this by Fourier transforming the cluster 
pair-correlation function [23] 

S H Chen et a1 

D I  
P [gx(r )  - 11 = -- D 3 - D  "P(-;) 4nR,  r 

From this, Chen and Teixeira [34] deduced the static structure factor of a fractal aggregate. 
Their result, valid for small scattering wave number Q, relevant for light scattering, can be 
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Figure 13. Structure faclor S(y) evaluared from a two-dimensional 128 Y 128 Monte Carlo 
simulation of an king model at three selected tempentures The structure factor has been 
evaluated according to (20) and (21) of the lext. assuming that monomers an sitting in a11 up- 
spin ntes. Symbols me S(q) evaluated according to (20). Lines are S(y) evduated according lo 
(21). defining clustem according to the Coniglia-Klein prescnption. This result shows that it is 
passible to find a prescription to divide rhe spins inlo clmters such that the scatrered intensity can 
be written either summing over the individual spins or summing over the independent clus~ers. 

written as 

sin [ ( D  - 1) tan-’ (QRx)] 

( D  - 1) QRk.1 -I- QzR~)‘D-i’2’’ 
= k 

The radius of gyration Rk of the k cluster is connected to the radius R I  of a single droplet 
by 

Rk = Rlk’lD. (24) 

From (23) one can derive [33] the following approximate expression for the static structure 
factor of a k cluster valid at low Q values: 

&(Q) %kexp(-$QZR:). (3, 

This approximation seems to be an essential one in the theory because it leads to a nice 
analytical form for the average relaxation rate which reduces to a well known Kawasaki 
formula in the limit of small droplet size to be discussed next. 

We use the following expression for the normalized cluster size distribution function 
N(k), proposed by Stauffer 13.51 for random percolation, and recently confirmed for the 
independent clusters close to the critical point by Wang [32]. 

s r - 2  kL-rexp(-:) 
kN(k) = r (2 - 5. 11s) 
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where r (x .  y )  is the incomplete Euler gamma function and S, the cut-off of the cluster size 
distribution, is proportional to (k)1/(3-r). The normalized dynamical structure factor is then 
given in this model by 

S N Chen et nl 

where De, the diffusion coefficient of the k cluster, is given by 

DI = Dlk- (28) 

Dt is the renormalized diffusion coefficient of a single droplet. It is written in  the form 

where p is the shear viscosity of the solution, and R is a fitting parameter which takes into 
account a possible deviation from the Stokes-Einstein law of diffusion. 

The normalized scattered-intensity autocorrelation function C(Q. t ) .  a quantity which 
is experimentally measured in a dynamic light-scattering experiment, can be shown to be 

C(Q. f) = 1 + IRQ,  0i2. (30) 

The average relaxation rate r ( Q )  for the cluster diffusion is given by the first cumulant of 
S(Q. i) 

To put the relaxation rate r ( Q )  into a universal form depending only on a scaling parameter 
x. we first define the correlation length = (R[/J?)S'ID and then the scaling variable by 
x = Q t .  The other non-dimensional parameter representing the lower limit of the cluster 
sizes is defined by XI = ( l / J 5 ) Q R [ .  From the above definitions, one can express the 
reduced first cumulant Y ( x ,  XI)  in terms of the two non-dimensional parameters by 

The reduced first cumulant is explicitly given by 

where U = (x~/x)~(I + x ~ ) ~ / * .  Note that the reduced first cumulant r* explicitly depends 
on the reduced size XI of the monomer. Thus the average relaxation rate of the order 
parameter relevant to the critical phenomenon cannot be written just as a product of a 
universal function of the scaling variable x = QC and a system-dependent function, as is in 
the case for the mode-coupling or mode-decoupling theories of critical dynamics in simple 
liquids. 
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In order to compare in more details the predictions of this model with the classical theory 
of critical phenomena, one has to evaluate both the fractal dimension and the polydispersity 
index for thc critical clusters. As far as percolalion is concerned, numerical simulations [35] 
gave universal values for the indices D = 2.5 and T = 2.2. These indices are connected by 
a hyperscaling relation [35] involving the space dimension d 

d + D  
D 

T=- (34) 

which implies r = 2.2 when taking D = 2.5, in agreement with the simulation result. As 
we mentioned before, the concentration fluctuation of the particle system can be represented 
by a cluster diffusion of independent clusters having a fractal dimension D given by 

where ,9 = 0.33 and v = 0.63 are respectively the king universal exponents of the 
coexistence curve and of the long-range correlation length, and d = 3 is the dimensionality 
of space. From (35) we infer D = 2.5 which. when introduced into the hyperscaling 
relation. (34) leads to r = 2.2. These two values are equal to the fractal dimension and the 
polydispersity index of percolating clusters. 

To get more accurate estimates of D and r ,  we can use a set of scaling laws known i n  
the theory of critical phenomena to eliminate the factor ,9/v on the right-hand side of (35). 
In fact we know that in d = 3, ,9 f v = ( I  + q )  12, so that 

5 - r l  D = -  
2 

and the polydispersity index r is then given by the hyperscaling relation as 

Taking the accepted value of the Fisher exponent = 0.03, we obtain D = 2.49 and 
T = 2.21. These values of the indices will be used as input parameters when fitting 
experiments to theory. 

Very close to the critical point where 6 is much larger than R I ,  the reduced first cumulant 
becomes a universal function of x = Qt. It reduces exactly to the Per1 and Ferrel [36] 
mode-decoupling result when RI = 0. and in this case it is also numerically very close to 
the Kawasaki formula I371 

where K ( x )  is the Kawasaki dynamic scaling function 

which is known to account very well for light-scattering data near critical points of one- 
component fluids or binary mixtures of molecular liquids. r*(x,  X I  = 0) has the simple 
asymptotic behaviour 

(40) 
(I 

X 
r * ( ~ , ~ ~ = o ) = -  M I  



I0874 S H Chen et a1 

r*(x. X ]  = 0)  = 6 x >> i (41) 

where a and 6 are known constants. Figure 14 illustrates the crossover from small-x to 
large-x behaviour as expressed in (40) and (41). Using light-scattering data taken near the 
critical point of the AoT/water/decane system, we illustrate the agreement of measured first 
cumulants of photon correlation functions and the prediction of (33). It is clear from the 
graph that the finite-size effect of microemulsion droplets is large enough to be detectable 
in a light-scattering experiment. 

I 10 
Ib 

Figure 14. 'The dynamic scaling functton T'(x.xl) associated with the avenge relaxation time 
of the cluster diffusion plotted a? B function of I/x for two values of lhe scaled droplet size 
X I .  Open cfrcles are experimental data from the Aor/wateddecme system near the cnucd point 
The broken line corresponds to Kawas&ki's mode-mode-coupling result. The solid line i s  the 
result of the improved version of the dynamic droplet model presented in the text. 

From (27) we can further derive the time dependence of the photon correlation function 
S(U. U) 

- 1 P )  (42) dz z*-'exp(-z - uz r ( 3 - r . u )  
S(U, U) = 

i n  terms of the dimensionless variable U previously defined and an additional dimensionless 
time variable U = D I R I Q ' ~ ( I  +x-~)"*. It is sufficient for our purpose here to state 
that at sufficiently short time rt << 1, (42) can be analytically integrated and leads to an 
exponential decay for the photon correlation function 

S ( U ,  U -+ 0) = I +exp[-2r (Q)r ]  (43) 

where r is the first cumulant already defined in  (31). At long time (rt >> I ) ,  the integral 
can also be evaluated analytically by using the steepest-descent method. In this regime, the 
photon correlation function 'asymptotically approaches a stretched exponential form 

~ ( u .  u >> 1) = i + exp [ - 2 ( ~ t ) ' ]  (44) 
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Figure 15. Experimental correlation functions taken from the AoT/H20/decane System new the 
critical point using B logarithmic photon comlalor. Note the nonexponentid behaviour at long 
bme. 

where the exponent B = D / ( D  + 1) is the universal number 0.713 and T is given by 

The crossover from the short-time exponential decay to the long-time stretched 
exponential decay of the photon correlation function occurs at the dimensionless variable 
rt = I .  Figure 15 gives several photon correlation fmctions measured near the critical 
point. From these semilogarithmic plots, one can see the extent of the deviation from 
exponentiality at long time. At the critical volume fraction, i.e. for a dilute sample, 
deviations from the exponential decay never amount to more than a few per cent. These 
small deviations can be detected experimentally only by the use of a logarithmic photon 
correlator having a very stable base line [38]. One has to stress at this point that one 
expects to observe the purely stretched exponential decay only for very large values of rt, 
say rr >> IO2, a region which presently cannot be accessed experimentally. Therefore 
a deduction of the fractal dimension from the fitting of photon correlation function to a 
stretched exponential form i n  the practical domain of measurements would produce an 
incorrect result. In  particular, since the experimental data are usually taken in the crossover 
regime, such a fitting procedure would give a value of fractal dimension smaller than the 
universal one. As a final comment we want to point out that the independent-clusters model 
is an evolution of the dynamic droplet model introduced by Martin and Ackerson [28]. The 
differences consist in the explicit consideration of the existence of a lower cut-off length 
scale given by the finite size of the monomers, which is not always negligible compared 
to the correlation length. The situation is different in the case of molecular liquids, where 
the lower cut-off length is always small compared to the correlation length. The existence 
of a finite lower cut-off length in micellar solutions and microemulsions introduces a non- 
universal characterization of the system. Another important difference from Martin and 
Ackerson is in the choice of the exponents and D that characterize the independent 
clusters and their distribution. For the calculation of scattering properties one must select 
truly independent clusters. 



I0876 

6. Dynamics of the droplet-number-density fluctuations near the percolatlon threshold 
at high volume fractions 

As we stated above, the phase behaviour and concentration fluctuations of dilute 
microemulsions having volume fractions lower than 40% and above 30°C are dominated by 
the existence of the critical point. However the percolation phenomenon and the associated 
cluster formation is the dominant factor controlling the dynamics of microemulsions at 
higher volume fractions and lower temperatures. One of the most significant findings of 
this research is the realization that the droplet dynamics near the percolation threshold is in 
many way similar to that near the critical point because both phenomena are controlled by 
cluster dynamics. The quantitative difference between the two lies in the magnitudes of the 
average cluster sizes at some given distances from the critical and percolation points where 
measurements are made. 

In the percolation regime the Gaussian approximation of (25) for the k-cluster static 
structure factor is no longer sufficient and a more complicated form, taking into account 
the fractal scattering, is necessary [33]. From this consideration, it  can be shown that the 
reduced first cumulant of the dynamic structure factor, defined in the same way as in section 
5, can be written as 

S H Chen et a1 

where p is the ratio of the hydrodynamic radius the radius of gyration of the clusters. The 
functions F(u ,  x ) ,  H ( u . x )  and G(x)  are defined in the following way: 

sin[(D - I)x/21 
D - 1  

H ( a , x )  = 

and the scale variable x is related to the average cluster size by 

x = hQRIS'ID (50) 

where h = JD ( D  + 1) 16. The reduced average relaxation rate (first cumulant) shows the 
asymptotic behaviour P ( x )  = I / x  when x << I and constant when x >> I .  In figure 16 
the reduced average relaxation rate deduced from dynamic light scattering experiments has 
been plotted as a function of l /x  for different temperatures and volume fractions. This 
graph includes our experimental data [39] and some other data taken from measurements 
performed by Chen and Huang [40], Sheu et al [21] and Magazir et a1 [41]. These data 
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Figure 16. Scaling plot of the scaled first cumulmt as a function of the scaled variable I / &  
close IO percolation. 

span a rather large domain of x i.e. 0.1 < x < I O  and allow us to study the crossover 
regime from the classical hydrodynamic Qz behaviour to the percolation Q3 behaviour. 
This feature is very well accounted for by our model. 

Along the same lines as developed above, we have also been able to derive the time 
evolution of the dynamic structure factor and from that calculate the photon correlation 
function. A rather complicated expression has been obtained [33]. The important point 
is that near the percolation threshold one can also observe two different regimes: at low 
value of the reduced time rr << 1, the formula predicts an exponential decay whereas for a 
large value of the reduced time, it predicts a stretched exponential decay, characterized by 
a universal exponent identical to the one for the critical phenomena, namely, /3 = 0.713. 
These predictions have been verified experimentally. In figure 17 are depicted photon 
correlation functions taken at a constant temperature but for different values of volume 
fraction. A very good agreement can be observed between our experimental results and 
the model in a wide range of  volume fractions. A numerical calculation of the photon 
correlation function has also been performed over a large domain of the reduced time in 
order that S( Q, t )  can be fitted to a stretched exponential function. This domain corresponds 
t o r t  from zero to 100. An interesting crossover phenomenon is predicted by the calculation: 
a strong deviation from the single-exponential decay should occur at a value of rt close 
to unity. This prediction has been verified experimentally (figure 18). At high volume 
fractions. i t  is very easy to detect experimentally the deviation from the initial exponential 
decay, in contrast to the situation near the critical point where the deviations are very small. 
This is due to the fact that near the critical point the average cluster size is of the order 
of 1000 while near the percolation point it is of the order of 50000. Thus the diffusion of 
an average percolation cluster is roughly five times slower than that of the average critical 
cluster. This brings the time window for which the crossover to the stretched exponential 
is predicted into an experimentally accessible range of the photon correlation function for 
the case near the percolation point. 
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Figure 17. Time correlation function for various volume fractions close to percolation. fmm 
[40]. taken at T = ??.6 :C and a 90' scattering angle. The solid lines are given by the lheory 
described in the text. with p = 0.713. 
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Figure 18. Double logmthmic plol of the dynamic Structure factor for v ~ o u  values of he 
pdimensiond vanable Tr. The dashed lines indicate the limiting slopes corresponding to M 

exponential and B stretched exponential. 

7. Dielectric relaxation 

We turn now to dielectric-relaxation mesurements close to the percolation threshold. We 
measured in a wide frequency range, from 100 H z  to 1 GHz, and in a large concentration 
domain, from 0.2 to 0.64 in volume fraction of the dispersed phase, the conductivity and 
the dielectric constant of the microemulsion [43]. The data are shown in figure 19. The 
low-frequency behaviour has been analysed in terms of power-law behaviours both below 
and above percolation, with the critical exponents s' and t typical of dynamic and static 
percolation we mentioned at the beginning. At percolation the intermediate-frequency 
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behaviour, for both U and E .  is characterized by a power law my with the exponent 
U = f / W  + f). The physical mechanism for the sudden increase in conductivity on 
approaching the percolation threshold has been interpreted in term of formation of transient 
clusters of microemulsion droplets. Such clusters offer a path for the motion of charge 
carriers among different droplets. The finite conductivity below percolation is related to 
the continuous restructuring of the clusters, with a typical time c, allowing the carriers to 
move across the sample even if at any time no infinite cluster exists. This description of 
the conductivity below the percolation threshold, named dynamical or stirred percolation 
112. 131, is able to explain the value of the critical exponent as s' = 2,9 - U, where ,9 
is the exponent related to the probability of belonging to the infinite cluster and U is the 
exponent for the divergence of the connectivity length. s' is different from the exponent 
s describing the divergence of conductivity below Tp in a static conductor-superconductor 
mixture. A complementary physical description which is able to explain the presence 
of finite conductivity below percolation is obtained by considering a simple mixture of 
materials of different conductivity. In such a case, the ratio of the conductivities plays a 
role similar to the restructuring time in the dynamical percolation model. The exponents 
s and s' are obtained by different assumptions on the scaling behaviour of the number 
of boundary sites between the two materials. A nice feature of these models is that they 
can be extended into the high-frequency domain. In a dynamical percolation model, the 
presence of a finite restructuring time introduces a crossover between the high-frequency 
o << I /Z  regime, where the behaviour is similar to the static percolation and the low- 
frequency regime, in which the rearrangement time plays a significant role. In the static 
mixture model, the frequency behaviour can be studied by introducing reactive elements. 
In the simple resistancecapacitance mixture, which in our case could be identified with 
the oil (mostly capacitive) and with the disperse phase (mostly resistive), the value of the 
resistance multiplied by the capacitance fixes the crossover frequency. Both models imply 
that the relaxation phenomena for the complex conductivity C = U + i o € ,  which gives with 
its real part the conductivity and with its imaginary part the permittivity multiplied by the 
frequency, obey a scaling relation given by the scaling function 0 

= Apf Q(c Ap-(S'+I) ) (51) 

in terms of the scaling variable x = cAp-("+'), where c is the ratio of the complex 
conductivities and A p  is the parameter which measures the distance from percolation [I41 in 
composition or in temperature. The scaling function 0 below percolation can  be developed 
in a series starting as 0 ( x )  x and evolves into an asymptotic behaviour for large x values 
as 0 ( x )  = x u .  

This type of scaling has been derived in the case of model binary systems on a lattice, 
in two-component electric circuits 1141 and in the study of diffusion on clusters [12, 44, 
451. The latter approach is the most interesting one since it describes the conductivity as a 
sum of contributions of independent clusters. Indeed the average mean square displacement 
is written as a sum of the squared displacements of the diffusing walkers over the clusters 
composing the system. The structure of the underlying fractal cluster is reflected in the 
value of the mean square displacement and allows a connection of the diffusivity anomaly 
indices with the percolation indices. To clarify the connection with the cluster picture, we 
write the conductivity as [12, 441 
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Figure 19. The measured conductivity (r m d  the relative dielectric constant < as a function 
of frequency for the following volume fractions: 0.20. 0.24. 0.28. 0.32. 0.36. 0.40. 0.44, 0.48. 
0.52. 0.56. 0.60. 0.64. from bottom to top for both quantities 

where r i (Tr)  is the squared displacement of a walker on a k cluster during the typical cluster 
rearrangement time T,. The corresponding diffusivity r z ( T , ) / T ,  can then be expressed as 
(i?i/F)f(rk/z), where f is a scaling function of the ratio of the time q it takes the charge 
carrier to visit all the sites in a typical k cluster to the cluster rearranging time. The outcomes 
of such an approach are a good description of both the static and relaxational properties 
of conductivity and dielectric constant at percolation. In fact with a proper choice of the 
scaling function f(?k/Tr) [46] it is possible to describe many aspects of the relaxation 
process, including the presence of a finite static conductivity below and at the threshold 
when the conductivity of the solvent is different from zero. It is also possible to explain 
the power-law behaviour of the complex cohductivity at percolation and the value of the 
corresponding exponent U (figure 20). 

8. Conclusions 

We have given concrete evidence that both the structbre and dynamics observed in a three- 
component microemulsion system, AOTM~O or DzOIdecane. near the critical point can be 
explained in terms of a model based on the formation of transient, polydisperse fractal 
clusters due to a short-range attraction between microemulsion droplets. This attractive 
interaction increases in a specific way as the temperature increases toward the critical point. 
We derive a quantitative relation between the interaction strength and the temperature from 
analyses of SANS data in the one-phase region approaching the critical point. This relation 
is used to explain the overall features of the phase diagram, including the cloud-point curve 
and the percolation line. The diffusive cluster dynamics also accounts for the temperature 
and the Q dependence of the first cumulant of photon correlation functions in the critical 
region. The dynamic scaling function associated with the average relaxation rate deviates 
significantly from the well known Kawasaki function away from the critical point due to 
the large sizes of the microemulsion droplets [38]. In this respect the so-called dynamic 



Water-in-oil microemulsions 

10' I (a) 

1O.l 

-- - ' 6  

@ 10.1 

10" 

10.' 
10' 10' 1 o6 1 0' 1 

f [Hzl 

10881 

10 

Figure 20. (a)  Scnling plot of the scaled tint cumulaet as a function of the scaled varinble I/x 
close to percolation [461. (h) Relntivc dielectric constant as B function of ihe frequency for the 
snme samples ns in (0). 

background effects are taken into account in a very natural way by this improved version 
of the dynamical droplet model. The size of the microemulsion droplet turns out to be 
an important parameter of the theory. The longtime behaviour of the photon correlation 
function S(Q.  I )  is shown to be asymptotically a stretched exponential form with a universal 
stretch exponent of 0.713 [331. Experimental measurements of S(Q. I), approaching the 
critical p ink  can be made only in the crossover regime for practical reasons, They shpw, 
however, small but significant deviations from exponential decay at long time, in full 
agreement with the theory, The dynamic slowing down of the relaxation rate can also 
be readily observed by dynamic light scattering approaching and near the percolation loci at 
higher volume fractions 121, 33,401. The first cumulant of photon correlation functions near 
and approaching the percolation line shows a slowidg down and a Q.crossover phenomenon 
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much the same as that near the critical point. The only difference between the two lies in 
the dependence of the average cluster size on the distance to the percolation or the critical 
point [42]. Dielectric-relaxation measurements close to the percolation threshold can also 
be interpreted in  terms of formation of transient clusters of microemulsion droplets, which 
offer a path for the motion of charge carriers. Experimental data satisfy scaling relations 
not only statically, as a function of composition and temperature, but also as a function of 
frequency between 100 kHz and I GHz. Again it is possible to describe the experimental 
data below ,and at percolation in terms of sums over clusters of different size relaxing with 
different times. The amplitude and relaxation time of the clusters are written in terms of 
scaling quantities as a function of their size. 
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